Skip to main content

Tricking bacteria to produce their own vaccines

Scientists have developed a way to manipulate bacteria so they will grow mutant sugar molecules on their cell surfaces that could be used against them as the key component in potent vaccines. Any resulting vaccines, if proven safe, could be developed more quickly, easily and cheaply than many currently available vaccines used to prevent bacterial illnesses.

Most vaccines against bacteria are created with polysaccharides, or long strings of sugars found on the surface of bacterial cells. The most common way to develop these vaccines is to remove sugars from the cell surface and link them to proteins to give them more power to kill bacteria.
Polysaccharides alone typically do not generate a strong enough antibody response needed to kill bacteria. But this new technique would provide an easy approach to make a small alteration to the sugar structure and produce the polysaccharide by simple fermentation.

“We are showing for the first time that you don’t have to use complicated chemical reactions to make the alteration to the polysaccharide,” said Peng George Wang, Ohio Eminent Scholar and professor of biochemistry and chemistry at Ohio State University and senior author of the study. “All we need to do is ferment the bacteria, and then the polysaccharides that grow on the surface of the cell already incorporate the modification.”

The research is scheduled to appear in the online early edition of the Proceedings of the National Academy of Sciences.

In vaccines, polysaccharides linked with carrier proteins are injected into the body. That sets off a process that causes the release of antibodies that recognize the sugars as an unwanted foreign body. The antibodies then remain dormant but ready to attack if they ever see the same polysaccharides again – which would be a signal that bacteria have infected the body.

Polysaccharides are chains of sugars, or monosaccharides, and they are targeted for vaccine development because they are the portion of bacterial cells that interact with the rest of the body.

Escherichia coli was used as a model for the study. Wang and colleagues used one of the existing monosaccharides present on the E. coli cell surface polysaccharides, called fucose, to generate this new modification. They manipulated the structure of the fucose to create 10 different analogs, or forms of the sugar in which just one small component is changed.

The scientists then manually introduced these altered forms of fucose to a solution in which bacterial cells were growing, and the bacterial cells absorbed the altered fucose as they would normal forms of the sugar. The presence of these altered forms of fucose then altered the properties of the polysaccharides that grew on the surface of the cells.

“This way, we don’t have to do anything to modify the polysaccharides. We let bacteria do it for us,” Wang said.

“Bacteria grow lots of polysaccharides – it’s similar to the way humans grow hair. But for a vaccine, you need to make the molecules more active, or energetic,” he said. “In our method, we feed the bacteria these chemicals while they are growing, and those chemicals end up in the polysaccharides and that makes them more immunogenic. That’s the technology.”

Wang said the approach is likely to be applicable to many different kinds of bacteria. But each type of pathogen must be tested individually with the alteration of sugars unique to its surface.

“If you want to prevent one type of bacteria, you have to find something very unique for this bacteria because different microbes have different characteristics,” he said. “You have to find the oddest thing on the cell surface. It has to be on surface because what the body sees first is the surface.”

His lab will next be testing the method’s effectiveness on the pneumococcus bacteria under an exploratory $100,000 grant from the Bill & Melinda Gates Foundation. The current vaccine to prevent pneumonia in babies and the elderly combines 23 strains of bacteria, making it complex and expensive to produce. Each injection costs about $50 in the United States. A less expensive way to develop the vaccine would increase its availability in the developing world, Wang said.

This published research was supported by an endowed Ohio Eminent Scholar Professorship on Macromolecular Structure and Function in the Department of Biochemistry at Ohio State. via Ohio State University.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B