Skip to main content

Complete genome of sorghum sequenced

Scientists at the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) and several partner institutions have published the sequence and analysis of the complete genome of sorghum, a major food and fodder plant with high potential as a bioenergy crop. The genome data will aid scientists in optimizing sorghum and other crops not only for food and fodder use, but also for biofuels production. The comparative analysis of the sorghum genome appears in the January 29 edition of the journal Nature.

Prized for its drought resistance and high productivity, sorghum is currently the second most prevalent biofuels crop in the United States, behind corn. Grain sorghum produces the same amount of ethanol per bushel as corn while utilizing one-third less water. As the technology for producing "cellulosic" (whole plant fiber-based) biofuels matures, sorghum's rapid growth--rising from eight to 15 feet tall in one season--is likely to make it desirable as a cellulosic biofuels "feedstock."

"This is an important step on the road to the development of cost-effective biofuels made from nonfood plant fiber," said Anna C. Palmisano, DOE Associate Director of Science for Biological and Environmental Research. "Sorghum is an excellent candidate for biofuels production, with its ability to withstand drought and prosper on more marginal land. The fully sequenced genome will be an indispensable tool for researchers seeking to develop plant variants that maximize these benefits."

Plant DNA is often notoriously difficult to analyze because of large sections of repetitive sequence and sorghum was no different. Jeremy Schmutz of the DOE JGI partner HudsonAlpha Institute for Biotechnology (formerly the Stanford Human Genome Center) and John Bowers of the University of Georgia pointed to these complex repetitive regions as accounting for the significant size difference between the rice and sorghum genomes, while also suggesting a common overall genome structure for grasses.

"Sorghum will serve as a template genome to which the code of the other important biofuel feedstock grass genomes--switchgrass, Miscanthus, and sugarcane--will be compared," said Andrew Paterson, the publication's first author and Director of the Plant Genome Mapping Laboratory, University of Georgia.

Scientists and industry officials say that completion of the sorghum genome will aid with sequencing of numerous other related plants, including other key potential bioenergy crops.

"I expect our improved understanding of the sorghum genome to have a major impact on the development of improved bioenergy crops for the emerging biofuels and renewable power industries," said Neal Gutterson, President and Chief Executive Officer of Mendel Biotechnology.

Sorghum's is only the second grass genome to be completely sequenced to date, after rice. With approximately 730 million nucleotides, sorghum's genome is nearly 75 percent larger than the size of rice.

Researchers used the whole genome "shotgun" method of sequencing first pioneered in the Human Genome Project. In this method, short random DNA fragments are partially sequenced and then analyzed by powerful supercomputers to reconstruct the original genome sequence. The repetitive sections and the length of the sorghum genome made assembling this "puzzle" a highly challenging computational problem.

By comparing sorghum's assembled code with rice's, the scientists were able to provide a "reality check" for rice's previously published estimate of protein coding genes.

"We found that over 10,000 proposed rice genes are actually just fragments," said DOE JGI's Dan Rokhsar, the publication's co-corresponding author. "We are confident now that rice's gene count is similar to sorghum's at 30,000, typical of grasses."

Other major contributions to the sorghum project were made by the research groups of Joachim Messing of Rutgers University, Therese Mitros of the University of California, Berkeley, and Klaus Mayer of the Helmholtz Center in Munich.
Source: DOE/Joint Genome Institute.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B