Skip to main content

Researchers traced the origin of platinum deposits in South Africa

The world's richest source of platinum and related metals is an enigmatic geological structure in South Africa known as the Bushveld Complex. This complex of ancient magmas is known to have formed some two billion years ago, but the source of its metallic riches has been a matter of scientific dispute. Now researchers from the Carnegie Institution and the University of Cape Town have traced the origin of the unique ore deposits by using another of South Africa's treasures--diamonds. The study, published in the June 12 issue of Nature, suggests that the source of these valuable ores may be ancient parts of the mantle beneath the African continent. Platinum group elements (PGEs), which include platinum, palladium, rhodium, ruthenium, osmium and iridium, are extremely rare in the Earth's crust. Platinum, the most abundant, is 30 times rarer than gold. Mined only in a few places in the world, these elements are becoming increasingly important in applications ranging from pollution control (they are key components of catalytic converters in automobiles) to microelectronics.


Previous isotopic studies of rocks from the Bushveld Complex had suggested that a significant fraction of the magma that formed the complex and deposited the ores came from shallow parts of the crust, despite the rarity of PGEs there compared to the Earth's mantle. "But the ore layers are extremely homogeneous over hundreds of kilometers," says Steven Shirey of the Carnegie Institution's Department of Terrestrial Magnetism. "The crust is very heterogeneous. That suggests a deeper source for the platinum." To test this idea, Shirey and Stephen H. Richardson of the University of Cape Town studied minute mineral inclusions in about 20 diamonds mined from areas surrounding the Bushveld Complex. The diamonds formed at depths of 150-200 kilometers within the Earth's mantle. By measuring the ratios of certain isotopes of strontium, osmium, and neodymium in the mineral inclusions, the researchers were able to determine the isotopic "signatures" of the different regions of the mantle where the diamonds grew. They then compared these signatures with those of ore rocks in the Bushveld Complex.

Richardson and Shirey found that the isotopic signatures of the ores could be matched by varying mixtures of source rocks in the mantle beneath the continental crust. That these parts of the mantle were involved in producing the magmas is also suggested by seismic studies, which reveal anomalies beneath the complex. The anomalies were likely the result of magmas rising through these parts of the mantle. "This helps explain the richness of these deposits," says Richardson. "The old subcontinental mantle has a higher PGE content than the crust and there is more of it for the Bushveld magmas to traverse and pick up the PGEs found in the ores."

The results of this study may be applicable to similar ore deposits elsewhere, such as the Stillwater Complex in Montana. "Knowing how these processes work can lead to better exploration models and strategies," says Shirey. Source: Zina Deretsky/Carnegie Institution.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B