Skip to main content

Why infectious diseases jumping from animals to humans

Why are so many infectious diseases jumping from animals to humans? Why do we have so little capacity to predict epidemics, or avoid them? Some answers, and possible solutions, can be found in the first trench-to-bench guide to wild primate infectious diseases, to be published Nov. 17 in the Yearbook of Physical Anthropology. "There is growing awareness that the majority of emerging pathogens in the world are coming from wildlife. And most of that wildlife is in tropical forests – in places where we have the least disease surveillance," says Thomas Gillespie, assistant professor of environmental studies at Emory University, and lead author of the article.

In addition to describing integrative approaches to studying primate infectious diseases, the article provides standardized, step-by-step guidelines for properly gathering and storing feces, blood and other specimens from wild primates for laboratory analysis.

Community member Peter Atwooki (left) and Tom Gillespie talk about the interface between conservation and health at a community meeting in Kanyawara, Uganda. "By giving researchers from a range of disciplines standardized guidelines for collecting data, and integrating that data across sites, we can build a baseline for patterns of primate disease. That may give us a chance to see something abnormal before it becomes an epidemic," says Gillespie, one of the world's leading primate disease ecologists. The article was in response to a growing outcry among scientists for integrated approaches to studying how outbreaks get their start. A meta-analysis published in the journal "Nature" in February showed that more than 60 percent of epidemics between 1940 and 2004 began when a germ jumped from wildlife to humans. Gillespie's co-authors on the Yearbook of Physical Anthropology article were Charles Nunn, a biological anthropologist at Harvard University; and Fabian Leendertz a virologist at the Robert Koch Institute and Max Planck Institute for Evolutionary Anthropology in Germany.

Risk of Primate, Human Pathogen Exchanges Up

The specialized field of primate disease ecology began around 1999, when the global HIV/AIDS pandemic was traced definitively to SIV-1 from chimpanzees. While HIV/AIDS and Ebola are the two most dramatic examples of human diseases linked to primates, many other viral, bacterial, fungal and parasitic pathogens found in apes and monkeys are readily transmissible to humans. Recent studies have also shown that potential pathogens are passing from people and domestic animals to primates, bolstering suspicions that primate epidemics of polio, measles and respiratory diseases came from humans.

"The close genetic relationship between wild primates and people, coupled with growing human activity in forests, is increasing the opportunities for the exchange of pathogens," Gillespie says.

One of Gillespie's current research projects, funded by the National Geographic Society, is tracking the ecology of pathogens among people and wild primates at logging sites in the Republic of Congo. The project is gathering data to support sustainable logging methods, as well as to protect the health of people and animals.

Integrated Research Key to Interventions

Gillespie is among the founding scientists of the Great Ape Health Monitoring Unit, a cooperative effort of the United Nations, academic institutions and non-governmental organizations. The unit strives to integrate research from anthropologists, health professionals, biologists, ecologists and other scientists who are studying wild primates in remote locales with the work of lab-based scientists and computer modelers.

"We want to reduce the risks of a pathogen jumping from animals to people and vice-versa," Gillespie says. "And if a pathogen does make the jump, we want to have enough data to develop effective interventions."
Credits: Emory Univ.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B