Skip to main content

New discovery in case of grey mold's killer gene

Gray mold is a gardener’s nightmare. The fungus, also known by its scientific name Botrytis cinerea, is a scourge to more than 200 agricultural and ornamental plant species, including staples such as tomatoes, strawberries, snap and lima beans, cabbage, lettuce and endive, peas, peppers, and potatoes. Gray mold envelops its target in a velvety vise, releasing a toxin that poisons the host plants’ cells, eventually causing the plant to die. So far, the only way to eliminate the pathogen is to spray plants with fungicides, which can be costly and can contaminate the surrounding environment.

Cane and colleagues in France and Spain have identified the DNA that gives gray mold its lethal power over useful plants and have devised a way to control the mold naturally. Now Brown University chemist David Cane, working with researchers in France and Spain, has figured out how the fungus’s deadly toxin is made and how it might be disarmed naturally. In a paper published online in ACS Chemical Biology, the scientists have identified the set of genes that manufactures the toxin and in particular the central gene the fungus uses for this synthesis. They also have also shown that shutting off this gene by interrupting the fungus’s DNA completely shuts down toxin production, removing the special weapon the mold uses to kill and invade target plant cells. “It’s a big step to being able to disarm this toxin naturally through a combination of DNA sequencing and chemistry,” said Cane, the Vernon K. Krieble Professor of Chemistry and professor of biochemistry, one of three primary authors of the paper. The researchers, led by French scientist and paper co-author Muriel Viaud, started by determining the complete DNA sequence for Botrytis cinerea. Working with Spanish organic chemist and paper co-author Isidro Collado, the scientists focused on the chemical agent — botrydial — that gray mold uses to overwhelm host plants.

The culprit is an enzyme called a sesquiterpene cyclase, Cane’s laboratory found.

“The metabolic pathways for creating organic compounds typically involve gene clusters, like a package,” Cane explained. “One great advantage to our investigation is that if you find one, you look to the left or to the right, and you find the others.”

In laboratory tests, Cane and the team introduced a mutant gene that deleted the sesquiterpene cyclase, which completely abolished production of the toxin.

“This means that if you can inhibit the enzyme from this pathway, you can eliminate this toxin,” Cane said.

The U.S. National Institutes of Health, the INRA Jeune Equipe in France and the Ministry of Education and Science in Spain funded the research.

The team now is working on a similar procedure to tackle a strain of Botrytis cinerea that is able to produce both botrydial and a second toxin that it uses to attack its plant targets.
Credits: Brown Univ.

Comments

Anonymous said…
The spores that are not filtered are then disbursed
outdoors so that 100% of the live and dead spores left
cannot grow inside the home or business. Negative
air filtration units and containment barriers must be utilized to
prevent the spread of these spores. As a result, many loops
in the landscape are formed and eventually these loops cut off the river,
forming lake-type bodies of water adjacent to the main river.


Feel free to visit my web blog: mold treatment Jacksonville

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B