Skip to main content

Growing roots on plants instead of leaves

Molecular cell biologist Pankaj Dhonukshe from Utrecht University has succeeded in growing roots on plants at places where normally leaves would grow. This important step in plant modification can be highly beneficial for improving crop yields and efficiency in agriculture. This research was largely carried out in collaboration between Utrecht University (The Netherlands) and Ghent University (Belgium) with help from scientists in Japan, USA and Switzerland. The results of this research appeared as an advance online publication of the weekly science journal Nature on 26 October 2008.

The photo on the left shows a normal plant with normal leaves and a root and the photo on the right shows a plant on which root has started to grow at the place of young leaf. The shoot part is shown in orange and the roots in green. (Credit: Image courtesy of Utrecht University). The plant hormone auxin plays a crucial role in coordination of stem cells and organ formation in plants. It promotes the formation of roots from stem cells and coordinates the growth of leaves and fruits. Auxin is produced mainly in young leaves, or shoots, and is then transported from one cell to the next towards the basal region of plant ultimately leading towards root formation. Pankaj Dhonukshe discovered a molecular switch to alter the auxin transport. By turning on the switch, Dhonukshe was able to reduce the extent of auxin transport towards the roots. The hormone then began to accumulate at the places in the young leaves where it is produced and roots began to emerge here where normally leaves would grow. These results are an important step in our understanding of the way plants grow and create novel future possibilities to modify the positioning of various plant organs such as roots, fruits and leaves. This specific manipulation of plant architecture promises to enhance yield-traits and crop harvesting. Molecular switches are particularly interesting for influencing plant forms, because utilization of traditional plant refinement approaches has certain limitations. The Utrecht research group is currently examining further interesting possibilities in this area.

Dhonukshe carried out the developmental biology research at Utrecht University, and the cellular biology research in cooperation with Ghent University.

Utrecht University has organised its top-level research into fifteen focus areas, which are intended to promote high-quality research and contribute to solving major problems in society. The study described above falls under the category ‘Life Sciences and Biocomplexity’, in which research is being carried out into all the processes in the cell from the molecular scale to the creation of multi-celled organisms and the interaction among cells. Genomics and proteomics form an important part of this area.

For more information, please visit http://www.uu.nl/EN/research/focusareas/.
Credits: ScienceDaily.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B