Skip to main content

Ginko biloba may help brain stroke patients

Working with genetically engineered mice, researchers at Johns Hopkins have shown that daily doses of a standardized extract from the leaves of the ginkgo tree can prevent or reduce brain damage after an induced stroke. The scientists, in a report published in Stroke, say their work lends support to other evidence that ginkgo biloba triggers a cascade of events that neutralizes free radicals known to cause cell death. "It's still a large leap from rodent brains to human brains but these results strongly suggest that further research into the protective effects of ginkgo is warranted," says lead researcher Sylvain Doré, Ph.D., an associate professor in the Department of Anesthesiology and Critical Care Medicine. "If further work confirms what we've seen, we could theoretically recommend a daily regimen of ginkgo to people at high risk of stroke as a preventive measure against brain damage."

In the study, researchers gave ginkgo biloba EGb 761 - a lab-quality form of the extract - to normal mice and HO-1 knockout mice, mice lacking the gene that produces the enzyme heme oxygenase-1(HO-1). HO-1 breaks down heme, a common iron molecule found in blood, into carbon monoxide, iron and biliverdin. HO-1 has been shown to act as an antioxidant and have a protective effect against inflammation in animal models. Doré and his team gave 100 milligrams per kilogram of EGb 761 extract orally once daily for seven days before inducing stroke in the mice by briefly blocking an artery to one side of the brain. After stroke induction, the mice were tested for brain function and brain damage. One such test, for example, involves running patterns, another tests reaction to an external stimulus. Similar tests were conducted on mice that did not receive the ginkgo extract. Neurobehavioral function was evaluated before the study and at 1, 2 and 22 hours after stroke using a four-point scale: (1) no deficit, (2) forelimb weakness, (3) inability to bear weight on the affected side, (4) no spontaneous motor activity.

Results showed that normal mice that were pretreated had 50.9 percent less neurological dysfunction and 48.2 percent smaller areas of brain damage than untreated mice. These positive effects did not exist in the HO-1 knockout mice. "Our results suggest that some element or elements in ginkgo actually protect brain cells during stroke," says Doré. Roughly 700,000 people experience a stroke in the United States annually. Of those, 87 percent have an ischemic stroke, which is caused by a blocked artery in the brain. Some brain damage occurs simply from the lack of blood getting to brain cells; however, it is known that an increase in the presence of free radicals at the site of an ischemic stroke - once the clot is cleared and the blood supply returns - is also a major cause of resulting brain cell damage. Free radicals are toxic oxygen molecules that are produced when cells die. According to Doré and his team, ginkgo increases HO-1 levels, and the antioxidant properties of this enzyme eliminate free radicals at the surrounding regions of the stroke site.

The only current treatment for ischemic stroke is to clear the clot with tissue plasminogen activator (tPA) or other means. This, however, offers no real protection against the cell damage that occurs when blood flow is restored. "Ginkgo has long been touted for its positive effects on the brain and is even prescribed in Europe and Asia for memory loss," says Doré. "Now we have a possible understanding for how ginkgo actually works to protect neurons from damage."

Native to China, the ginkgo tree is grown as an ornamental shade tree in Australia, Southeast Asia, Europe, Japan and North America. It is commercially cultivated in France and the United States. It has a grey bark, reaches a height of 35 meters and a diameter of 3 to 4 meters. It has deciduous, fan-like leaves that are green, grey-yellow, brown or blackish. Source: Johns Hopkins Medical Institutions/EurekAlert.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B