Skip to main content

Improving integration of joint replacements by coating titanium with polymer

Research at the Georgia Institute of Technology shows that coating a titanium implant with a new biologically inspired material enhances tissue healing, improves bone growth around the implant and strengthens the attachment and integration of the implant to the bone. "We designed a coating that specifically communicates with cells and we're telling the cells to grow bone around the implant," said Andrés García, professor and Woodruff Faculty Fellow in Georgia Tech's Woodruff School of Mechanical Engineering and the Petit Institute for Bioengineering and Bioscience.

Details of the new coating appear in the July issue of the journal Biomaterials. The research was supported by the National Institutes of Health, the Arthritis Foundation and the Georgia Tech/Emory National Science Foundation Engineering Research Center on the Engineering of Living Tissues. Total knee and hip replacements typically last about 15 years until the components wear down or loosen. For many younger patients, this means a second surgery to replace the first artificial joint. With approximately 40 percent of the 712,000 total hip and knee replacements in the United States in 2004 performed on younger patients 45-64 years old, improving the lifetime of the titanium joints and creating a better connection with the bone becomes extremely important.

Current clinical practice includes roughening the surface of the titanium implant or coating it with a flaky, hard-to-apply ceramic that bonds directly to bone. In collaboration with Georgia Tech School of Chemistry and Biochemistry professor David Collard, graduate students Tim Petrie and Jenny Raynor, and research technician Kellie Burns, García coated the titanium with a thin, dense polymer. "Our coating consists of a high density of polymer strands, akin to the bristles on a toothbrush, that we can then modify to present our bio-inspired, bioactive protein," explained García.

In this case, the polymer presented controlled amounts of an engineered protein that mimics fibronectin, a protein in the body that acts as a binding site for cell surface receptors called integrins. It is important to control the integrins binding to the titanium implant because integrins provide signals that direct bone formation. Therefore, controlling integrin binding to the titanium will result in targeted signals that enhance bone formation around the implant. To bind integrins to titanium, researchers previously coated titanium with a small biological signal containing the sequence arginine-glycine-aspartic acid (RGD) that binds to integrins. However, this region alone binds many different integrin receptors and with much less affinity than the full fibronectin protein.

"It has been common to mimic only very small sections of fibronectin, but when you take a small section and ignore the rest of the molecule you lose specificity and activity, and therefore signaling is impaired," said García. For that reason, García engineered a much longer region of the same type of fibronectin that included the RGD peptide sequence as well as new sections also known to have sites that participate in integrin binding. To evaluate the in vivo performance of the coated titanium in bone healing, chemists Raynor and Collard coated the surfaces of tiny clinical-grade titanium cylinders with the polymer brushes. Then engineers Petrie and García modified them with peptide sequences.

Two-millimeter circular defects were drilled into a rat's tibia bone and the cylinders were pressed into the holes. They tested three types of coatings: uncoated titanium, titanium coated with the RGD peptide and titanium coated with different densities of the engineered fibronectin fragment. To investigate the function of these novel surfaces in promoting bone growth, the researchers quantified osseointegration, or the growth of bone around the implant and strength of the attachment of the implant to the bone. Analysis of the bone-implant interface four weeks later revealed extensive and contiguous bone matrix and a 70 percent enhancement in the amount of contact between the implant and bone with the titanium implants coated with the engineered fibronectin fragment over the uncoated or RGD-coated titanium.

García and Petrie tested the fixation of the implants by measuring the amount of force required to pull the implants out of the bone. The study showed significantly higher mechanical fixation of the implants coated with the engineered fibronectin fragment over the implants with the other coating and uncoated titanium.

In addition to total joint replacements, García is studying how to fill large gaps between bones, which sometimes occur after a traumatic injury or tumor removal. "We are developing a strategy to present peptides that encourage the surrounding bone to grow in and fill in around the gap," said García. By improving communication with the body's cells, García can control the integration and healing response of the body to any implanted device. Currently, most become encapsulated by a collagen sheath, which affects the performance and long-term viability of the device. García aims to use these biomaterials to help integrate devices implanted in the body. Source: Georgia Inst. of Tech.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B