Skip to main content

Tartalo, the robot that makes its own decisions

A research team from the University of the Basque Country, led by Basilio Sierra, is devising a robot that can get around by itself. Tartalo is able to identify different places and ask permission before going through a doorway. We are accustomed to seeing robots programmed to carry out a concrete task such as the robotic arms well known in industry. What is surprising is to see a robot walking without help and making decisions for itself. This is precisely what the Autonomous Robotics and Systems Research Team at the University of the Basque Country (UPV/EHU) are involved in: increasing the autonomy of robots so that they are evermore capable of carrying out more tasks on their own. Some years ago they developed Marisorgin, the robot for distributing mail and now they have put Tartalo into operation.

Those working on the third floor of the Computer Science Faculty in the Basque city of Donostia-San Sebastián find it normal and everyday to meet Tartalo in the corridors- meet, not bump into! This 1.5-metre tall, intelligent machine side-steps any obstacle in its path, thanks to sensors that have been installed around its “body”: sonars that emit and detect ultrasounds, infrared sensors and laser rays. The laser, for example, measures the distance of the robot from any object within a radius of 180 degrees. Mr Basilio Sierra’s team, although it did not build the robot, having acquired it, but it is developing and enhancing its abilities. With these sensors and the computer that is the robot’s ‘brain’, Tartalo will have the wherewithal to move from one place to another without problems; in fact, to wander. What the research team at the Department of Computational Sciences and Artificial Intelligence want to achieve, however, is a robot capable of going anywhere it is told to.


Finding one’s way inside buildings


The machines best known for guiding one from a starting point to a given goal are GPS navigation systems. However, these do not function inside buildings and neither would it be realistic to create a database with the plans for every building in the world. For this reason the UPV/EHU researchers use biomimetic systems as a basis for developing the robot, meaning that Tartalo does the same as a person or animal on entering a new place: explore the terrain and take in points of reference. But, for a machine to carry out what living creatures do by, as it were, instinct, the computer programmers have to nevertheless put in a huge quantity of data, programmes and calculations. Buildings are semi-structured environments wherein determined common spaces are always found. Tartalo has been “taught” (programmed) to recognise four of these: room, corridor, front hall and “junction”. Thus, if we were to take the robot to our home, the first thing it would have to do is to carry out a process of auto-location, going around the apartment in order to memorise the location of these four places. By this process the machine creates a species of topological map and the homeowner only has to teach it what each space is called. For this to be possible, UPV/EHU researchers are designing systems of interaction between machine and persons. For example, in order for the robot to understand instructions, they are perfecting a voice recognition system and touch screen.

Single eye, sharp vision

In order to identify what is in front, to distinguish between a room and a corridor, for example, Tartalo uses this single eye - which gives it its name – as a camera. It measures the images received through the eye-camera, compares them with its database and then evaluates probabilities to decide what the image that it has ahead looks like. The robot knows, for example, that if the space is long and narrow, it is a corridor. The most important skill that Tartalo has been taught is to recognise doors. In fact, in order to access most of the places instructed to do so, the robot will have to pass through a doorway first. This is why the camera is located at the level of the doorknob or handle, which is what enables the identification of the door. When this happens, the system is programmed so that, when moving down a corridor, it seeks and negotiates doorways. If the door is closed, as it is not yet fitted with an arm to open it, it knocks two or three times on the door with its “feet”.

The aim of the UPV/EHU research team is to develop the navigation system of the robot and the recognition of doors is fundamental to this end. From now on, Tartalo will have to learn to distinguish between many other things, such as faces, voices or any object that it is asked to fetch. But each one of these actions requires a specific programme and this, for the time being, is outside the remit of the research being undertaken by the UPV/EHU Autonomous Robotics and Systems Research Team. Nevertheless, little by little the skills developed by other teams will be incorporated into this robot. Source: Basque Research.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B