Skip to main content

Butterfly colors not just from pigments, but nanostructures

Nowhere in nature is there so much beautiful colour as on the wings of butterflies. Scientists, however, are still baffled about exactly how these colours are created. Marco Giraldo has been examining the structure of the surface of the wings of the cabbage white and other butterflies. Among the things he has discovered is why European cabbage whites are rebuffed more often than Japanese ones. Giraldo will be awarded a PhD by the University of Groningen on 25 January 2008. The colours on butterfly wings are used as an advertisement. The patterns on the wings enable butterflies to recognize their own species at a distance and differentiate between males and females – rather handy when you’re hunting for a partner. Just like a pointillist painting, the surface of the wing is constructed of a huge collection of coloured dots, called scales, each about 50 x 250 micrometers in size. However, scientists don’t yet know very much about how the colour on the wings is formed. What they do know is that the colours are created in two different ways: via pigments and via nanostructures on the scales, which ensure that light is distributed in ways that are sometimes spectacular.

These so-called structure colours can clearly be seen on the morpho butterflies of the South American rainforests. Marco Giraldo examined the structure and the pigments of the wings of the cabbage white and other Whites from the Pieridae family. The physicist chose the Whites because they have relatively simple pigmentation. By comparing the scales of various sorts under an electron microscope, he discovered how the colouration of Whites is caused. Giraldo is the first to clarify how the colour of these butterflies is influenced by the nanostructural characteristics.


Although the spatial structure of a scale depends on the type of butterfly, there are a number of general characteristics: A scale consists of two layers, linked by pillars. The undersurface is virtually smooth and without structure, but the upper surface is formed by a large number of elongated, parallel ridges, about one to two micrometers from each other. The colour is determined by the dispersal of light by the scale structures and by the absorption of light by any pigments present. The pigments of the cabbage white, for example, absorb ultraviolet light and the brimstone blue light. At the same time they also scatter white or yellow light respectively. Giraldo also discovered that the wings of Whites are constructed in a surprisingly effective way. Both sides of the wings have two layers of overlapping scales that reflect light. The more scales there are, the more light is reflected. This light reflection is very important as butterflies want to be seen.

Giraldo discovered that these two layers form an optimal construction: with more than two layers the reflection may be improved, but the wing would become disproportionately heavy. Giraldo has also discovered why Japanese male cabbage whites are better at recognizing females than European cabbage whites, who still make mistakes in this area. This is because the wings of Japanese male and female cabbage whites differ subtly, unlike those of their European relatives: the scales on the wings of Japanese female cabbage whites lack specific pigment grains, those that ensure that UV light is absorbed. Males do have these pigment grains, as do both sexes of the European cabbage whites. This difference makes it easier for Japanese male cabbage whites, who unlike humans can see UV light, to differentiate between males and females.

New colour methods can be developed using the knowledge derived from Giraldo’s research. It may be possible to apply the nanostructures observed in butterflies to create impressive optic effects in paint, varnish, cosmetics, packaging materials and clothes. Industry is thus following butterfly wing research with great interest. Sciencedaily News.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B