Skip to main content

Ant guts have answers for better drugs

Scientists have discovered two key proteins that guide one of the two groups of pathogenic bacteria to make ant's hardy outer shells -- their defense against the world. The work, they said, could allow researchers to create new antibiotics against gram-negative bacteria, like E. coli and salmonella, that would destroy these bacteria by disabling the mechanism that produces their protective coating. "A long-term goal is to find inhibitors of these proteins we have discovered," said Natividad Ruiz, a research molecular biologist at Princeton University and the lead author on the paper describing the work. "Small molecule inhibitors could become antibiotics that subvert the outer membrane." The research, conducted by Ruiz, Thomas Silhavy, Princeton's Warner-Lambert Parke-Davis Professor of Molecular Biology, and others from Harvard University, is described in the online edition of the April 8 Proceedings of the National Academy of Sciences. The team discovered the proteins through an extended process of elimination. The scientists looked at microbes in the guts of carpenter ants. The bacteria, which have lived there for millions of years -- passed on over many generations -- have lost many of the traits necessary for survival in the outer world. As a result, their collection of genes, known as a genome, is far smaller and simpler than the genome of E. coli.

Scientists sequenced the genome of the model bacterium E. coli 11 years ago, yet they still do not understand the functions of about 40 percent of the thousands of proteins produced by those genes, according to Ruiz. Proteins are the workhorses of cells, directing and producing the creation of many key cell structures and functions. In contrast, the genome of the bacteria found in the ant gut, Blochmannia floridanus, contains the instructions for only 583 proteins. Since the bacteria are closely related, nearly all of Blochmannia's genes -- 564 -- are found in E. coli. The scientists reasoned that they could find the protein containing the instructions for building the germ's outer casing. "We designed a computer-based search that filtered out proteins that lacked the characteristics essential for outer membrane construction," Ruiz said. "In the end, only two of the 564 proteins remained." They found the two missing proteins of a pathway that ferries one of the key components of the outer shell, called LPS, to the cell surface. Members of Silhavy's laboratory use E. coli as a model system to better understand the workings of the cell, such as how it senses changes in its environment. Silhavy is a bacterial geneticist who has made fundamental contributions to the field of cell biology.via sciencedaily and iStockphoto.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B