Skip to main content

Blood biomarker for Huntington's disease

The first blood test that can predict the onset and progression of Huntington's disease has been identified by a UCL-led study. The researchers say their findings, published in Lancet Neurology, should help test new treatments for the genetic brain disorder, which is fatal and currently incurable. "This is the first time a potential blood biomarker has been identified to track Huntington's disease so strongly," said the study's senior author, Dr Edward Wild (UCL Institute of Neurology).
The test measures the neurofilament light chain (neurofilament), a protein released from damaged brain cells, which has been linked to other neurodegenerative diseases but hasn't been studied in the blood of Huntington's disease (HD) patients before.
The team, led by scientists at UCL Huntington's Disease Centre working with colleagues in Sweden, the USA, Canada, France and the Netherlands, measured neurofilament levels in blood samples from the TRACK-HD study, an international project that followed 366 volunteers for three years. They found that levels of the brain protein were increased throughout the course of HD -- even in carriers of the HD genetic mutation who were many years from showing symptoms of the disease. HD mutation carriers had neurofilament concentrations that were 2.6 times that of the control participants, and the level rose throughout the disease course from premanifest to stage 2 disease.
In the group who had no symptoms at the start of the study, the level of neurofilament predicted subsequent disease onset, as volunteers with high neurofilament levels in the blood at the start were more likely to develop symptoms in the following three years. After taking into account factors already known to predict progression -- age and a genetic marker -- the blood level of neurofilament was still able to independently predict onset, progression and the rate of brain shrinkage as measured by MRI scans.
Currently, the best biomarkers available are measured with neuroimaging or cerebrospinal fluid, which are more difficult and expensive to obtain than a blood test. The researchers say that predicting progression in mutation carriers who do not yet show symptoms has been particularly challenging.
"We have been trying to identify blood biomarkers to help track the progression of HD for well over a decade, and this is the best candidate that we have seen so far," said Dr Wild. "Neurofilament has the potential to serve as a speedometer in Huntington's disease, since a single blood test reflects how quickly the brain is changing. That could be very helpful right now as we are testing a new generation of so-called 'gene silencing' drugs that we hope will put the brakes on the condition. Measuring neurofilament levels could help us figure out whether those brakes are working."
The researchers caution that the test is not expected to be immediately helpful for individual patients. "This is the first time neurofilament has been measured in blood, so much more work is needed to understand the potential and limitations of this test," said Lauren Byrne (UCL Institute of Neurology), the study's first author. "In the future, if drugs to slow HD become available, it may well be used to guide treatment decisions. For now, this test is most promising as a much-needed tool to help us design and run clinical trials of new drugs."
Dr Robert Pacifici, chief scientific officer of CHDI Foundation, a US non-profit Huntington's disease research foundation, welcomed the development. "I can see neurofilament becoming a valuable tool to assess neuroprotection in clinical trials so that we can more quickly figure out whether new drugs are doing what we need them to. As a drug hunter, this is great news."
The study's funders included the CHDI foundation, GlaxoSmithKline, Swedish Research Council, European Research Council, Wallenberg Foundation and Wolfson Foundation.
About Huntington's disease:
Huntington's disease is a fatal genetic neurological disease. It usually develops in adulthood and causes abnormal involuntary movements, psychiatric symptoms and dementia. Approximately 10,000 people in the UK have HD with around 25,000 at risk. It is incurable, and no effective treatments exist to slow it down. Patients usually die within 20 years of the start of symptoms. HD is caused by a single known genetic mutation, and each child of a carrier of the mutation has a 50% chance of inheriting the disease.
Source: UNIVERSITY COLLEGE LONDON

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B