Skip to main content

New Discovery Could Help Slow Down Huntington's Disease

Medical researchers may have uncovered a novel approach to treat an incurable and ultimately fatal neurodegenerative disease that affects hundreds of thousands of people.

Two international studies, one led by the University of Leicester, and the other a collaboration with Leicester led by scientists in the USA, hold out promise for slowing down the development of Huntington's disease -- and potentially, Alzheimer's and Parkinson's diseases. The research, which is in its early stages, represents an important milestone in understanding these debilitating conditions.

Huntington's disease is a devastating inherited neurodegenerative disorder that is always fatal. The disorder of the central nervous system causes progressive degeneration of cells in the brain, slowly impairing a person's ability to walk, think, talk and reason. Approximately 1 in 10,000 individuals are affected worldwide.
In the Department of Genetics at Leicester, the groups of Dr Flaviano Giorgini and Prof Charalambos Kyriacou found that by genetically targeting a particular enzyme in fruit-flies, kynurenine 3-monooxygenase or KMO, they arrested the development of the neurodegeneration associated with Huntington's disease. Furthermore by directly manipulating metabolites in the KMO cellular pathway with drugs, they could manipulate the symptoms that the flies displayed.

The fruit-fly study, to be published in Current Biology on June 7, was also aided by the groups of Prof Robert Schwarcz (Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore), who pioneered work in this area, and Dr Paul Muchowski (Gladstone Institutes, University of California, San Francisco). The two latter researchers and Dr Giorgini have simultaneously published a paper in Cell, announcing a similar breakthrough in understanding the therapeutic relevance of KMO in transgenic mouse models of Huntington's and Alzheimer's diseases. 
 Eye color mutations in the fruit-fly are being used to study degeneration of photoreceptor neurons, which may have relevance to conditions such as Huntington's disease. This image was taken using a light microscope. (Credit: University of Leicester.

The fruit -fly research at Leicester took place over three years and was funded by the Huntington's Disease Association and the CHDI Foundation, Inc. Dr Giorgini, who led the UK study, states, "This work provides the first genetic and pharmacological evidence that inhibition of a particular enzyme -- KMO -- is protective in an animal model of this disease, and we have also found that targeting other points in this cellular pathway can improve Huntington's disease symptoms in fruit flies. This breakthrough is important as no drugs currently exist that halt progression or delay onset of Huntington's disease. We are tremendously excited about these studies, as we hope that they will have direct ramifications for Huntington's disease patients. Our work combined with the study in our companion publication in Cell, provides important confirmation of KMO inhibition as a potential therapeutic strategy for these individuals. As many KMO inhibitors are available, and more are being developed, it is hoped that such compounds can ultimately be tested in clinical trials for this as well as other neurodegenerative disorders."

In Leicester the experiments were carried out by Drs Susanna Campesan, Edward Green, and Carlo Breda and in Baltimore, by Dr Korrapati Sathyasaikumar. The collaborating teams will continue their studies aimed at enhancing the development of medical intervention in Huntington's and other neurodegenerative disorders.
Cath Stanley, Chief Executive of the Huntington's Disease Association, said: "This is an exciting piece of research that will offer hope to the many people affected by Huntington's disease".

Daniel Zwilling, Shao-Yi Huang, Korrapati V. Sathyasaikumar, Francesca M. Notarangelo, Paolo Guidetti, Hui-Qiu Wu, Jason Lee, Jennifer Truong, Yaisa Andrews-Zwilling, Eric W. Hsieh, Jamie Y. Louie, Tiffany Wu, Kimberly Scearce-Levie, Christina Patrick, Anthony Adame, Flaviano Giorgini, Saliha Moussaoui, Grit Laue, Arash Rassoulpour, Gunnar Flik, Yadong Huang, Joseph M. Muchowski, Eliezer Masliah, Robert Schwarcz, Paul J. Muchowski. Kynurenine 3-Monooxygenase Inhibition in Blood Ameliorates Neurodegeneration. Cell, 2011; DOI: 10.1016/j.cell.2011.05.020

Susanna Campesan, Edward W. Green, Carlo Breda, Korrapati V. Sathyasaikumar, Paul J. Muchowski, Robert Schwarcz, Charalambos P. Kyriacou, Flaviano Giorgini. The Kynurenine Pathway Modulates Neurodegeneration in a Drosophila Model of Huntington's Disease. Current Biology, 2011; 21 (11): 961-966 DOI:

Source: University of Leicester.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B