Skip to main content

Virus wrecks plants defense to insect pests for their survival

In 752, Japanese Empress Koken wrote a short poem about the summertime yellowing of a field in what is thought to be the first account of a viral plant disease. More than 1,250 years later, scientists concluded that the virus Koken described was part of the particularly insidious geminivirus family that continues to decimate tomato, tobacco and cotton crops worldwide. Now, new research shows how cunning an enemy one of these ancient viruses can be, manufacturing a protein that deforms and sterilizes plants and at the same time wrecks their defenses against the pests that spread the disease to others.

Researchers at The Rockefeller University have found that βC1, a toxic protein produced by the tomato yellow leaf curl China virus (TYLCCV), mimics the behavior of one of two different molecules that govern the development of leaf shape and vein structure. In doing so, it throws the plants off course, causing the unseemly curling and crumpling of leaves and the production of sterile flowers. But it also suppresses the plants’ jasmonic acid response, a defense mechanism against pests feeding on the plants. The result is that the pests — in this case whiteflies that plague tobacco plants — flourish in the diseased crop, spreading the virus faster and faster. Nam-Hai Chua, Andrew W. Mellon Professor and head of the Laboratory of Plant Molecular Biology, and his colleagues published the work in Genes and Development.

“This is a new way to look at the relationship between viruses, plants and vectors,” says Jun-Yi Yang, a postdoc in Chua’s lab who did the research. “If you just look at viruses and host plants, you can’t explain why the whiteflies tend to congregate on infected plants. Our research explains how the disease can spread so fast.”

The researchers inserted a gene that produces βC1 into Arabidopsis plants, model organisms for studying plant biology. The plants grew up with symptoms very similar to those of tobacco plants infected with TYLCCV. Yang and colleagues found that these mutants had the same problems as plants that overproduced a protein known as Asymmetric leaves 2 (AS2), which along with Asymmetric leaves 1 (AS1), regulates crucial elements of a plant’s development. In effect, βC1 poses as AS2 and interacts with AS1, upsetting the healthy development of plants. But it also weakens the response of genes that normally boost the jasmonic acid defense against the threat of an invasive pest, the researchers found.

The discovery of how a toxic protein manipulates the relationship of the plant and the whitefly to favor the virus could lead to a more comprehensive strategy for fighting the disease. “You need to fight against both viruses and insect vectors,” Yang says. “If you can increase the jasmonic acid response, you’ll have a better chance against whiteflies.”
Credits: Rockefeller University.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B