Skip to main content

Automated systems for precision farming in oranges and apples

Two groups of researchers at Carnegie Mellon University's Robotics Institute have received a total of $10 million in grants from the U.S. Department of Agriculture (USDA) to build automated farming systems. One is for apple growers and one is for orange growers, but both are designed to improve fruit quality and lower production costs. The systems use sensors on autonomous robotic vehicles or at fixed sites within the orchards to gather a multitude of data about tree health and crop status. Robotic vehicles will be used to administer precise amounts of water or agricultural chemicals to specific areas or trees. The vehicles also will be used to automate routine tasks such as mowing between tree rows.

The projects were funded this fall through the USDA's new Specialty Crop Research Initiative. The Comprehensive Automation for Specialty Crops (CASC) Program, led by Sanjiv Singh, research professor of robotics, received a four-year, $6 million grant to develop systems for the apple industry. The Integrated Automation for Sustainable Specialty Crop Farming Project, led by Tony Stentz and Herman Herman of the Robotics Institute's National Robotics Engineering Center (NREC), received a three-year, $4 million grant to develop systems for the citrus industry. Both project grants will be matched dollar for dollar by industry, state governments and other funding sources.

"We are taking automation to a level never before demonstrated in an agricultural setting," said Herman of the NREC project. "This will provide an early look at how the automated farm may someday operate and promises to deliver insights and lessons far beyond what should be expected from small demonstrations of autonomous scouts."

"Mobile sensors and computer tracking will enable growers to monitor their orchards in unprecedented detail," said Singh. "Growers will receive early warning of diseases and insect infestations, as well as continuous updates on crop status. With this information, growers can make timely decisions that will save them money and improve the quality of their crop."

Although Carnegie Mellon is not a university traditionally associated with agricultural research, the Robotics Institute's Field Robotics Center has been involved in agricultural automation since the early '90s and the NREC has worked with agricultural equipment manufacturers since it opened in 1996. Moreover, both organizations are experienced in managing research programs involving academic, industrial and governmental researchers working closely with end users.

"This level of collaboration between academia, government and industry is not at all common in agriculture research," said Jim McFerson, manager of the Washington Tree Fruit Research Commission. The technologies developed will be applicable not only to apple and orange growers, but to producers of all kinds of tree fruits, he added.

"Growers can use the data generated by this new approach to make decisions throughout the year regarding pest management, pruning, fertilization, irrigation and yield estimates," McFerson said. "We believe this will result in higher quality fruit at a lower per unit cost, as well as a more productive and safer workplace."

The CASC Program will work with apple growers in Pennsylvania, Oregon and Washington and includes collaborators from Penn State, Washington State, Oregon State and Purdue universities as well as the USDA Agricultural Research Service. Researchers will use a fleet of automated four-wheel vehicles that can perform multiple tasks, including tree monitoring and chemical spraying. Industrial partners include Toro, Trimble, Vision Robotics, IONco and Sensible Machines.

The NREC's Integrated Automation for Sustainable Specialty Crop Farming Project will deploy a fleet of networked, unmanned tractors in the orange groves of Southern Gardens Citrus (SGC), one of Florida's largest growers. In addition to SGC, collaborators include researchers at the University of Florida, Cornell University and Deere & Co.

Harvesting remains one of the most labor-intensive operations at orchards, but it also is very challenging to automate because of demanding handling and cost requirements. Both projects will investigate new designs for mechanical harvesters, including a vacuum-assisted device that the CASC will use for apple harvesting, but the emphasis will be on aiding human harvesters, rather than replacing them.
Credits: Eurekalert.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B