Skip to main content

Testing for cancer and multiple sclerosis in minutes like in pregnancy test

Testing for diseases such as cancer and multiple sclerosis could soon be as simple as using a pregnancy testing kit. A team led by scientists at the University of Leeds has developed a biosensor technology that uses antibodies to detect biomarkers – molecules in the human body which are often a marker for disease – much faster than current testing methods. The technology could be used in doctors' surgeries for more accurate referral to consultants, and in hospitals for rapid diagnosis. Tests have shown that the biosensors can detect a wide range of analytes (substances being measured), including biomarkers present in prostate and ovarian cancer, stroke, multiple sclerosis, heart disease and fungal infections. The team also believes that the biosensors are versatile enough to test for diseases such as tuberculosis and HIV.

The technology was developed through a European collaboration of researchers and commercial partners in a 2.7 million Euro project called ELISHA. It features new techniques for attaching antibodies to innovative surfaces, and novel electronic measurement methods that need no reagents or labels.

ELISHA was co-ordinated by Dr Paul Millner from the Faculty of Biological Sciences at the University of Leeds, and managed by colleague Dr Tim Gibson. Says Dr Millner: "We believe this to be the next generation diagnostic testing. We can now detect almost any analyte faster, cheaper and more easily than the current accepted testing methodology."

Currently blood and urine are tested for disease markers using a method called ELISA (Enzyme Linked Immunosorbant Assay). Developed in the 1970s, the process takes an average of two hours to complete, is costly and can only be performed by highly trained staff.

The Leeds team are confident their new technology – which provides results in 15 minutes or less - could be developed into a small device the size of a mobile phone into which different sensor chips could be inserted, depending on the disease being tested for.

"We've designed simple instrumentation to make the biosensors easy to use and understand," says Dr Millner. "They'll work in a format similar to the glucose biosensor testing kits that diabetics currently use."

Professor Séamus Higson, Dean of the Faculty of Medicine and Biosciences, Cranfield Health, and one of the partners within the ELISHA programme, says: "The speed of response this technology offers will be of great benefit to early diagnosis and treatment of many diseases, and will permit testing in de-localised environments such as GP's surgeries."

A spinout company – ELISHA Systems Ltd – has been set up by Dr Gibson, commercial partners Uniscan Instruments Ltd and Technology Translators Ltd to bring the technology to market.

Says Dr Gibson: "The analytes used in our research only scratch the surface of the potential applications. We've also shown that it can be used in environmental applications, for example to test for herbicides or pesticides in water and antibiotics in milk."

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B