Skip to main content

Its not the songs, but steroids that spur the brain growth in sparrows

Neuroscientists are attempting to understand if structural changes in the brain are related to sensory experience or the performance of learned behavior, and now University of Washington researchers have found evidence that one species of songbird apparently has something in common with a few baseball sluggers. Both rely on steroids, birds to increase the size of song production areas of their brain and some players, apparently, to knock a fastball out of the park. Writing recently in the Journal of Neuroscience, Eliot Brenowitz and his colleagues showed that the Gambel's white-crowned sparrow uses testosterone, a naturally occurring steroid, to trigger the seasonal growth of these brain regions. Birds use song to attract mates and mark their territory. Their finding is counter to some previous work with other birds and rodents that indicated environmental factors can influence brain development and create more neuronal connections.

"We would like to think that if we shape the environment we can guide the brain's structure," said Brenowitz, a UW professor of psychology and biology. "But the idea that experience can drive growth of the brain regions that control song behavior in birds was disproved by this study. You can change the experience and the behavior, but you don't change the structure of the brain."The UW scientists found that the three brain regions in white-crowned sparrows that had been deafened were just as large as those regions in normal sparrows. However, the deafened birds only sang one-eighth the number of songs that the hearing birds sang. To show this, the researchers captured 19 adult male white-crowned sparrows during their fall migration and housed them in short-day light conditions to mimic winter for 12 weeks. Eleven of the birds then were surgically deafened. A week after the surgery, all of the birds were given testosterone implants and were shifted to long-day light conditions, similar to what they would encounter during their breeding season in Alaska.

The birds' three song-control regions are called the HVC, RA and X. All are located in the forebrain and grow quickly and in sequence. The brains of the birds were examined after 7 and 30 days, and the volume of the song production areas did not differ between the deafened and the hearing sparrows. Even though the deafened birds sang considerably less often, there was no degradation in the structure of their songs, according to Brenowitz.

Another major finding of the study is that seasonal growth of these song production areas of the brain does not require hearing or high levels of singing. "This is surprising to a lot of people because many thought seasonal growth of song nuclei was related to the rate of singing," he said. While the research was conducted on birds, it also has potential long-term human applications, addressing the broad issue of environment enrichment supporting brain plasticity.

"This study suggests that playing tapes of recorded speech to try to help a person recover language after a stroke might not be productive. But perhaps we could use neutrophins, growth-inducing proteins whose synthesis by brain neurons is stimulated by testosterone. In sparrows, brain areas are directly stimulated by these hormones to grow and one day such hormones might possibly help repair brain damage caused by strokes or neurodegenerative diseases," said Brenowitz. Source: Univ. of Washington.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B