Skip to main content

Computer applications and statistical tools might help in studying gene variations

While scientists are using the human genome to associate certain genes with disease, Dr. Hongyan Xu wants to ensure they are accounting for natural variations in those genes. "These differences can create some challenges in analyzing data," says Dr. Xu, biostatistician in the Medical College of Georgia School of Graduate Studies. "There is always some difference in ethnic backgrounds across a study population." For instance, a study looking at a population of blacks from Augusta and blacks from Chicago wouldn't necessarily take into account the difference in subpopulations, he says. "Some groups of blacks could have different degrees of ancestry from different African groups," he says. "Some populations of blacks have different skin tones, which indicate a difference in genetic makeup. That isn't always taken into account."

Scientists use genome-wide association studies to compare the genes of people with health conditions to the genes of healthy people, thereby better understanding basic biological processes that affect health and possibly how to better diagnose and treat disease. Some studies account for differences by using control groups who self-report similar ethnicities. But there can be wide variations because people are not always completely aware of their ancestry, Dr. Xu says. A computer-based statistical tool could be the answer, he says. Dr. Xu and colleagues will start by examining an existing database from an ongoing association study of stroke risk in black children. That study, conducted by Dr. Abdullah Kutlar, hematologist/oncologist and director of the MCG Sickle Cell Center, aims to understand the genetics of stroke risk in children with sickle cell disease. With funding from the National Institutes of Health, Dr. Xu and his team will take a closer look at children already identified as high-risk because of high blood flow velocity in the brain, as measured by transcranial Doppler tests.

Previous MCG research identified high-velocity blood flow as a risk factor for stroke and regular blood transfusions as a way to reduce that risk. "While Dr. Kutlar is looking for the underlying genetic reasons for the higher stroke risks in this sample of patients, we will be looking for ways to identify the subpopulations in that sample," Dr. Xu says. "If population structure isn't taken into account, it could affect the validity of study results." Researchers will use a statistical approach known as coalescent theory, which traces coding sequences of genes in a population sample to a single ancestral copy of a gene. That gene would theoretically be copied in the genetics of every member of an identical population. For instance, two people with almost identical sets of chromosomes could differ in a very small way – by one structural unit that binds their DNA. By tracing it back, researchers would reach a point where the "copied" gene would not be present. That would indicate the point where two lineages joined, Dr. Xu says.

Genetic differences among the two populations could then be tagged, subcategorized and accounted for in study results, he says. "With the coalescent theory, we focus on the samples rather than the whole population," Dr. Xu says. "That way, we can generate samples with various levels of population structure with great efficiency using computers, which are important for large-scale genome-wide studies. Understanding the genetic basis for disease is key to prevention, diagnosis and effective treatment. Developing a method that accounts for variations in the genetics of people who are similar but distinct is crucial to better understanding the genetics of health." via Medical Coll. of Georgia.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B