Skip to main content

Sugar-coated nanotech batteries

Nanotechnology could improve the life of the lithium batteries used in portable devices, including laptop computers, mp3 players, and mobile phones. Research to be published in the Inderscience publication - International Journal of Nanomanufacturing - demonstrates that carbon nanotubes can prevent such batteries from losing their charge capacity over time. Researchers at the Shenyang National Laboratory for Materials Science, in China, have been investigating how to improve the kind of rechargeable batteries that are almost ubiquitous in today's portable devices. Mobile phones, mp3 players, personal digital assistants (PDAs), and laptop computers usually use lithium-ion batteries to give them portability. However, Li-ion batteries suffer from degradation especially when they get too hot or too cold and eventually lose the capacity to be fully recharged. This means a loss of talk time for mobile phone users and often no chance to use a laptop for the whole of a long haul flight. The problem of the slow degradation of Li-ion batteries is usually due to the formation of a solid electrolyte interphase film that increase the batteries internal resistance and prevents a full recharge. Researchers have suggested using silicon in the composition of the negative electrode material in Li-ion batteries to improve charge capacity. However, this material leads to even faster capacity loss as it repeatedly alloys and then de-alloys during charge-discharge cycles.

Shengyang's Hui-Ming Cheng and colleagues have turned to carbon nanotubes (CNTs) to help them use silicon (Si) as the battery anode but avoid the problem of large volume change during alloying and de-alloying. Carbon nanotubes resemble rolled-up sheets of hexagonal chicken wire with a carbon atom at the crossover points of the wires and the wires themselves being the bonds between carbon atoms, and they can be up to a millimeter long but mere nanometers in diameter. The researchers grew carbon nanotubes on the surface of tiny particles of silicon using a technique known as chemical vapor deposition in which a carbon-containing vapor decomposes and then condenses on the surface of the silicon particles forming the nanoscopic tubes. They then coated these particles with carbon released from sugar at a high temperature in a vacuum. A separate batch of silicon particles produced using sugar but without the CNTs was also prepared. With the new Si-CNT anode material to hand, the team then investigated how well it functioned in a prototype Li-ion battery and compared the results with the material formed from sugar-coated silicon particles.

They found that after twenty cycles of the semi-cell experiments, the sugar-coated Si-CNT composite material achieved a discharge capacity of 727 milliamp hours per gram. In contrast the charge capacity of the simple sugar-coated particles had dropped to just 363 mAh per gram. via Eurekalert.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B