Skip to main content

Laser beam to sound waves and then back to light waves

Swapping data between media like this would allow information to be captured and retained for very brief intervals. Data could be stored within pockets of acoustic vibration created when laser beams interact along a short strand of optical fiber, the team reported in the Dec. 14, 2007 issue of the journal Science. The Duke experiments address a barrier to efforts at developing computer networks that can run on light instead of electrons. "The real gist of the work is how to create a memory for optical pulses," said Duke physics professor Daniel Gauthier, the report's corresponding author. Computers in use now manipulate the flow of electrons to shunt the data they carry into memory. But light has proved to be stubbornly resistant to similar traffic controls. "We don't have random access memories for light the way electronic computers do," Gauthier said.

The new method, suggested by Gauthier's postdoctoral research associate Zhaoming Zhu, uses a phenomenon called "stimulated Brillouin scattering." Opposing laser beams passing though each other along an optical fiber create acoustic vibrations known as phonons within the glass. "To efficiently create such acoustic waves, you have to have two laser beams of slightly different frequencies interacting with each other," Gauthier said. In a series of experiments at Duke, Zhu found that if he encoded information onto one of those laser beams, the data could be imprinted on newly-created phonons. Such phonon sounds are much too high-pitched for humans to hear, Gauthier said. Zhu, the Science report's first author, documented that phonons could retain the data for as long as 12 billionths of a second. The information could then be successfully re-transferred from sound to light again by shining a third laser beam through the fiber.

"While short by human standards, 12 billionths of a second is long in comparison to the time scales used in optical data transmission," said coauthor Robert Boyd, a professor of optics and physics at the University of Rochester's Institute of Optics.
While Zhu conducted the experiments, Gauthier and Boyd examined the findings' theoretical underpinnings. The work was funded by the Defense Advanced Research Projects Agency's Defense Sciences Office Slow-Light Program. The new method works at room temperatures and at wavelengths of light compatible with optical fibers already used in telecommunications, giving it several advantages over competing techniques for manipulating light. More work will be needed before this approach becomes workable in optical computation, Gauthier acknowledged. First, the power used for the write and read pulses is about 100 watts, "rather high for any type of telecommunications application," he said.

"The other issue is that we're only storing the data for about 10 nanoseconds," Gauthier added. "There may be a few applications where such short storage times would be okay. But, for many applications, you would like to store it for seconds, a report from sciencedaily.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B