Skip to main content

Uncovering Neurodegenerative Diseases From Cellular Processes

Scientists at the University of Manchester have uncovered how the internal mechanisms in nerve cells wire the brain. The findings open up new avenues in the investigation of neurodegenerative diseases by analysing the cellular processes underlying these conditions.

Dr Andreas Prokop and his team at the Faculty of Life Sciences have been studying the growth of axons, the thin cable-like extensions of nerve cells that wire the brain. If axons don't develop properly this can lead to birth disorders, mental and physical impairments and the gradual decay of brain capacity during aging.

Axon growth is directed by the hand shaped growth cone which sits in the tip of the axon. It is well documented how growth cones perceive signals from the outside to follow pathways to specific targets, but very little is known about the internal machinery that dictates their behaviour.


Dr Prokop has been studying the key driver of growth cone movements, the cytoskeleton. The cytoskeleton helps to maintain a cell's shape and is made up of the protein filaments, actin and microtubules. Microtubules are the key driving force of axon growth whilst actin helps to regulate the direction the axon grows. Dr Prokop and his team used fruit flies to analyse how actin and microtubule proteins combine in the cytoskeleton to coordinate axon growth. They focussed on the multifunctional proteins called spectraplakins which are essential for axonal growth and have known roles in neurodegeneration and wound healing of the skin.

What the team demonstrate in this recent paper is that spectraplakins link microtubules to actin to help them extend in the direction the axon is growing. If this link is missing then microtubule networks show disorganised criss-crossed arrangements instead of parallel bundles and axon growth is hampered. By understanding the molecular detail of these interactions the team made a second important finding. Spectraplakins collect not only at the tip of microtubules but also along the shaft, which helps to stabilise them and ensure they act as a stable structure within the axon. This additional function of spectraplakins relates them to a class of microtubule-binding proteins including Tau. Tau is an important player in neurodegenerative diseases, such as Alzheimer's, which is still little understood. In support of the author's findings, another publication has just shown that the human spectraplakin, Dystonin, causes neurodegeneration when affected in its linkage to microtubules.

Talking about his research Dr Prokop said: "Understanding cytoskeletal machinery at the cell level is a holy grail of current cell research that will have powerful clinical applications. Thus, cytoskeleton is crucially involved in virtually all aspects of a cell's life, including cell shape changes, cell division, cell movement, contacts and signalling between cells, and dynamic transport events within cells. Accordingly, the cytoskeleton lies at the root of many brain disorders. Therefore, deciphering the principles of cytoskeletal machinery during the fundamental process of axon growth will essentially help research into the causes of a broad spectrum of diseases. Spectraplakins like at the heart of this machinery and our research opens up new avenues for its investigation".

What Dr Prokop's paper in the Journal of Neuroscience also demonstrates is the successful research technique using the fruit fly Drosophila. The team was able to replicate its findings regarding axon growth in mice which in turn means the findings can be translated to humans. Dr Prokop points out fruit flies provide ideal means to make sense of these findings and essentially help to unravel the many mysteries of neurodegeneration.

Dr Prokop continues: "Understanding how spectraplakins perform their cellular functions has important implications for basic as well as biomedical research. Thus, besides their roles during axon growth, spectraplakins of mice and humans are clinically important for a number of conditions and processes including skin blistering, neuro-degeneration, wound healing, synapse formation and neuron migration during brain development. Understanding spectraplakins in one biological process will instruct research on the other clinically relevant roles of these proteins."

The recently published paper represents six years of work by Dr Prokop and his dedicated team.


Journal Reference:
  1. Juliana Alves-Silva, Natalia Sánchez-Soriano, Robin Beaven, Melanie Klein, Jill Parkin, Thomas H. Millard, Hugo J. Bellen, Koen J. T. Venken, Christoph Ballestrem, Richard A. Kammerer, and Andreas Prokop. Spectraplakins Promote Microtubule-Mediated Axonal Growth by Functioning As Structural Microtubule-Associated Proteins and EB1-Dependent TIPs (Tip Interacting Proteins). Journal of Neuroscience, July 4, 2012 DOI: 10.1523/%u200BJNEUROSCI.0416-12.2012


Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B