Skip to main content

Weaker Synchronization Between Brain Areas: A New Marker For Autism

The biological causes of autism are still not understood. A diagnosis of autism is only possible after ages three or four; and the tests are subjective, based on behavioral symptoms. Now, in research that appeared in Neuron, scientists at the Weizmann Institute of Science, Carnegie Mellon University and the University of California, San Diego have found, for the first time, a method that can accurately identify a biological sign of autism in very young toddlers. By scanning the brain activity of sleeping children, the scientists discovered that the autistic brains exhibited significantly weaker synchronization between brain areas tied to language and communication, compared to that of non-autistic children.

"Identifying biological signs of autism has been a major goal for many scientists around the world, both because they may allow early diagnosis, and because they can provide researchers with important clues about the causes and development of the disorder," says postdoctoral fellow Dr. Ilan Dinstein, a member of the group of Prof. Rafael Malach, who headed this study in the Weizmann Institute's Neurobiology Department. While many scientists believe that faulty lines of communication between different parts of the brain are involved in the spectrum of autism disorders, there was no way to observe this in very young children, who are unable to lie still inside an fMRI scanner while they are awake.


As compared to the control brain (top), the autistic brain (bottom) shows weaker inter-hemispheric synchronization in several areas, particularly the superior temporal gyrus (light blue) and the inferior frontal gyrus (red). (Credit: Image courtesy of Weizmann Institute of Science).

But work by Malach's group and other research groups pointed to a solution. Their studies had shown that even during sleep, the brain does not actually switch off. Rather, the electrical activity of the brain cells switches over to spontaneous fluctuation. These fluctuations are coordinated across the two hemispheres of the brain such that each point on the left is synchronized with its corresponding point in the right hemisphere.

In sleeping autistic toddlers, the fMRI scans showed lowered levels of synchronization between the left and right brain areas known to be involved in language and communication. This pattern was not seen either in children with normal development or in those with delayed language development who were not autistic. In fact, the researchers found that this synchronization was strongly tied to the autistic child's ability to communicate: The weaker the synchronization, the more severe were the symptoms of autism. On the basis of the scans, the scientists were able to identify 70% of the autistic children between the ages of one and three.

Dinstein said, "This biological measurement could help diagnose autism at a very early stage. The goal for the near future is to find additional markers that can improve the accuracy and the reliability of the diagnosis."

Prof. Rafael Malach's research is supported by the Nella and Leon Benoziyo Center for Neurosciences, which he heads; the Nella and Leon Benoziyo Center for Neurological Diseases; the Carl and Micaela Einhorn-Dominic Brain Research Institute; the Friends of Dr. Lou Siminovitch; and the S. and J. Lurje Memorial Foundation. Prof. Malach is the recipient of the Helen and Martin Kimmel Award for Innovative Investigation. Prof. Malach is the incumbent of the Barbara and Morris L. Levinson Professorial Chair in Brain Research.

Ilan Dinstein, Karen Pierce, Lisa Eyler, Stephanie Solso, Rafael Malach, Marlene Behrmann, Eric Courchesne. Disrupted Neural Synchronization in Toddlers with Autism. Neuron, 2011; 70 (6): 1218 DOI: 10.1016/j.neuron.2011.04.018

Source: Weizmann Institute of Science.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B