Skip to main content

Finding Disease Genes Faster

Harnessing the new generation of rapid, highly accurate gene-sequencing techniques, a research team has identified the disease-causing mutation in a newly characterized rare genetic disease, by analyzing DNA from just a few individuals. The power and speed of the innovative bioinformatics tool marks a step toward personalized genomics -- discovering causative mutations in individual patients.

"Our research is proof-of-principle that a new software tool called VAAST can identify disease-causing mutations with greater accuracy, using DNA from far fewer individuals, more rapidly, than was previously possible," said study leader Gholson J. Lyon, M.D., Ph.D., a psychiatrist and principal investigator in the Center for Applied Genomics at The Children's Hospital of Philadelphia. He added, "VAAST is a probabilistic disease-mutation finder for personal genomes; it can sort through the millions of gene variants in an individual's DNA to identify mutations that cause disease."

VAAST, an acronym for variant annotation, analysis and search tool, was developed by Mark Yandell, Ph.D., of the University of Utah and Martin G. Reese, Ph.D., of the informatics company Omicia, Inc. (Yandell is also a co-author on the current study). Lyon began the research at the University of Utah, where he collaborated with Yandell and clinical geneticist Alan Rope, M.D.

The study appeared online in The American Journal of Human Genetics. In a separate paper published in Genome Research, Yandell and Reese detail the development and applications of VAAST.

Although several of the existing software tools for analysis of personal genome sequences have been shown to be sufficiently powered to identify mutations underlying previously known disorders, Lyon notes that the current report is one of the first times a personal genome analysis tool has identified a previously unknown syndrome.

Calling VAAST "a major advance in the field," Eric J. Topol, M.D., director of the Scripps Translational Science Institute, said, "One of the most important and exciting opportunities in genomic medicine is the newfound ability to pinpoint the root cause of an unknown disease in an individual. The VAAST tool fulfills a significant unmet need of interpreting whole genome sequences and will have a remarkable impact on accurate genomic diagnosis of many individuals." Topol, a prominent expert in genomics and personalized medicine, had no involvement in the VAAST research.

Lethal Mutation Struck Baby Boys in Two Families

Lyon's team used VAAST to identify the cause of an extremely rare X-linked genetic disorder that is lethal in infancy. The disease-causing mutation is in a gene called NAA10. Affecting only males, it causes an aged appearance, facial abnormalities, developmental delay, and cardiac arrhythmias, among other conditions. Lyon and colleagues studied a family in Utah with a history of several boys with these symptoms who died in infancy, and analyzed DNA from five boys in the family. The researchers are tentatively calling the disease Ogden syndrome, reflecting the family's city of residence.

Although the detailed biological mechanisms remain to be investigated, the mutation alters an enzyme involved in a process called N-terminal acetylation, in which one end of a protein is modified by the addition of a chemical called an acetyl group. N-terminal acetylation occurs in 80 percent of human proteins, but abnormalities in this specific protein modification have not previously been shown to give rise to a human disorder. In this case, disrupting N-terminal acetylation results in symptoms ultimately causing death in infancy.

While the authors were preparing their manuscript, a second research group at the National Human Genome Research Institute notified them that they too had identified the same NAA10 mutation in a second family with three boys who had similar symptoms to those found in the Utah family. Further analysis showed the two families were unrelated -- indicating that the disorder is a syndrome and not an isolated condition found only in one family.

In retrospect, said Lyon, the VAAST algorithm identified the causative mutation using data from just two individuals -- an affected boy in one family and a mother (who was a carrier and not affected) in the unrelated family. This demonstrates that VAAST can identify disease-causing mutations based on DNA from only two unrelated individuals. "Based on this fact, we believe that VAAST will likely accelerate the discovery of disease-causing mutations in both common, complex disorders such as ADHD and autism, and in rare Mendelian disorders," said Lyon.

Lyon collaborated with The Center for Applied Genomics, one of the world's largest programs in pediatric genomic analysis, and has since relocated to The Children's Hospital of Philadelphia and joined the Center. The director of the Center, Hakon Hakonarson, M.D., Ph.D., is a co-author of the current paper.

Support for this work came from the National Human Genome Research Institute, part of the National Institutes of Health. Other support came from the University of Utah Department of Psychiatry, the National Cancer Institute, the Research Council of Norway and the Norwegian Cancer Society. Among Lyon's co-authors were researchers from The Children's Hospital of Philadelphia; the University of Utah; BGI-Shenzhen; the University of Bergen, Norway; and the NIH.

Alan F. Rope, Kai Wang, Rune Evjenth, Jinchuan Xing, Jennifer J. Johnston, Jeffrey J. Swensen, W. Evan Johnson, Barry Moore, Chad D. Huff, Lynne M. Bird, John C. Carey, John M. Opitz, Cathy A. Stevens, Tao Jiang, Christa Schank, Heidi Deborah Fain, Reid Robison, Brian Dalley, Steven Chin, Sarah T. South, Theodore J. Pysher, Lynn B. Jorde, Hakon Hakonarson, Johan R. Lillehaug, Leslie G. Biesecker, Mark Yandell, Thomas Arnesen, Gholson J. Lyon. Using VAAST to Identify an X-Linked Disorder Resulting in Lethality in Male Infants Due to N-Terminal Acetyltransferase Deficiency. American Journal of Human Genetics, 2011; DOI: 10.1016/j.ajhg.2011.05.017
Mark Yandell, Chad D. Huff, Hao Hu, Marc Singleton, Barry Moore, Jinchuan Xing, Lynn B. Jorde, Martin G. Reese. A probabilistic disease-gene finder for personal genomes. Genome Research, 2011; DOI: 10.1101/gr.123158.111

Source: Children's Hospital of Philadelphia, via EurekAlert!

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B