Skip to main content

Similarity in maple seeds and animals flight

The twirling seeds of maple trees spin like miniature helicopters as they fall to the ground. Because the seeds descend slowly as they swirl, they can be carried aloft by the wind and dispersed over great distances. Just how the seeds manage to fall so slowly, however, has mystified scientists. In research published in the journal Science, researchers from Wageningen University in the Netherlands and the California Institute of Technology (Caltech) describe the aerodynamic secret of the enchanting swirling seeds.

The research, led by David Lentink, an assistant professor at Wageningen, and Michael H. Dickinson, the Zarem Professor of Bioengineering at Caltech, revealed that, by swirling, maple seeds generate a tornado-like vortex that sits atop the front leading edge of the seed as they spin slowly to the ground. This leading-edge vortex lowers the air pressure over the upper surface of the maple seed, effectively sucking the wing upward to oppose gravity, giving it a boost. The vortex doubles the lift generated by the seeds compared to nonswirling seeds.

When maple seeds become airborne they pick up downward speed and start to spin around their center of gravity, which is located in the nut. This spinning motion is induced by the airflow around the seed as it descends to the ground. Because the spinning, helicopter-like, motion of the maple seeds arises automatically, it is called autorotation. The autorotation slows down the descent of the seed such that the seed can be carried further away from the tree by wind. (Credit: David Lentink).This use of a leading-edge vortex to increase lift is remarkably similar to the trick employed by insects, bats, and hummingbirds when they sweep their wings back and forth to hover. The finding means that plants and animals have converged evolutionarily on an identical aerodynamic solution for improving their flight performance. To measure the flow of air created by swirling seeds, the scientists built plastic models of the seeds with radii of about five inches, or 5 to 10 times larger than a maple seed. The seeds were spun through a large tank of mineral oil using a specially designed robot, modified from a device at Caltech called "Robofly." Previously, Robofly helped to determine the aerodynamic forces that keep insects aloft.

The size of the model seed, the speed at which it spun through the tank, and the viscosity of the oil were chosen so that the characteristics of the fluid flow generated by the model were identical to those produced by real maple seeds--just flowing through oil instead of air.

Next, the scientists used a powerful laser to create a sheet of light that illuminated tiny glass beads added to the oil. They then used a camera to capture images of the motion of the beads as the model seed spun through the tank. The images revealed the presence of a tornado-like vortex lying near the front leading edge of the spinning seed. Force measurements attached to the model showed that the swirling vortex created extra lift that would act to slow the descent of a seed as it spun to the ground.

To verify the results from the robot seed models, the team built a wind tunnel at the Wageningen University to examine the flow created by real maple seeds as they spin freely. Smoke was used to visualize the flow of air around the spinning seeds. These studies of 32 specimens confirmed that real seeds do indeed produce a vortex that generates exceptionally high lift, and that the vortex is aerodynamically similar in structure to the vortex made by the flapping wings of insects, bats, and hummingbirds when they hover.

The research might have implications for the design of swirling parachutes—which have been designed by space agencies to slow the descent of future planetary probes exploring the atmospheres of planets such as Mars—and of micro-helicopters.

"Maple seeds could represent the most basic and simple design for a miniature helicopter, if the swirling wing could be powered by a micromotor," says Lentink. Single-rotor helicopters have been built and flown successfully with wing spans of roughly a meter, but never at the scale of a maple seed.

"There is enormous interest in the development of micro air vehicles, which, because of their size, must function using the same physical principles employed by small, natural flying devices such as insects and maple seeds," says Dickinson. For example, Lockheed Martin attempted to develop inexpensive "maple seed drone cameras" that could be deployed in large numbers for surveillance, "although the project is no longer funded," Lentink says.

"This is still an open challenge for future aerospace engineers, and our aerodynamic study of maple seeds could help design the first successful powered 'maple' helicopters," he adds. Over the past four years, Lentink, an aerospace engineer, has designed operational flying, flapping, and morphing micro air vehicles, inspired by his insect and bird flight research.
via California Institute of Technology.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B