Skip to main content

New computer models to control malaria

Modifying the environment by using everything from shovels and plows to plant-derived pesticides may be as important as mosquito nets and vaccinations in the fight against malaria, according to a computerized analysis by MIT researchers. The researchers have developed a new computer model for analyzing different methods of trying to control the spread of malaria, one of the world's most-devastating diseases. Among their findings using the model is that environmental measures such as leveling the land to eliminate depressions where pools can form can be an important part of the strategy for controlling the disease.

MIT civil and environmental engineering student Mustafa Dafalla '09 gathers water samples at a pond in Niger to check for malaria larvae. (Credit: Arne Bomblies). Reports on the work, carried out by Professor of Civil and Environmental Engineering Elfatih Eltahir and graduate students Arne Bomblies and Rebecca Gianotti, were presented this week at a meeting of the American Geophysical Union in San Francisco. Malaria, Eltahir explained, is "a significant global health challenge" that accounts for one-third of all deaths of children under 5 worldwide. By developing new software to analyze the impacts of different methods of attempting to limit malaria's spread, which involves a complex chain of transmission between larvae, mosquitoes and humans, "we have made significant progress" toward better control of the disease, he said. While most efforts at dealing with malaria have focused on the human side, such as attempts to develop a vaccine, Eltahir said that efforts to control environmental factors --such as working to eliminate the low spots where pools of water collect during the rainy season, or applying locally grown plant materials to limit the growth of mosquitoes -- can have a dramatic effect on controlling malaria's spread. And unlike importing expensive medicines, such an approach can rely on local efforts as simple as having people with shovels fill in the low spots in the terrain.

"By using local tools and local labor, our approach relies less on high-technology equipment from outside the region, which tends to make the local people more dependent," he said.

In addition, the new comprehensive computer model will provide a tool for analyzing how different areas' vulnerability to malaria will be affected by a changing climate.

To validate the accuracy of the computer modeling of conditions, the team has been working for the last four years in a remote area of Niger, which lies in the Sahel desert region of northern Africa. "Africa is the hot spot for malaria in general," Eltahir explained, so this fieldwork provides substantial validation of the model.

In the field, Bomblies and others have monitored every aspect of malaria's lifecycle, including doing counts of mosquito larvae and adult mosquitoes, identifying the exact species of mosquitoes (since only specific varieties carry the malaria parasite), and mapping the topography and monitoring the size and duration of pools of water where the mosquitoes breed. "We gathered data that would serve as validation for the model that we were developing," Bomblies said.

Eliminating pools of standing water, or increasing drainage so that such pools last less than the seven to 10 days it takes for the mosquitoes to mature, can be an effective strategy, the analysis shows. In addition, it allows comparison of different methods. Filling in the low spots using shovels, it turns out, is as effective at controlling the disease as plowing the land so that water more rapidly percolates down into the soil.

That is not a new idea, but the new software provides a quantitative way to compare its impact with other approaches, and to develop specific strategies for a given region. Filling in low spots "is an established technique," said Bomblies, who has spent a total of 13 months leading the fieldwork in Niger. "But it hasn't been specifically applied in the region in which we've been working."

And unlike other approaches such as vaccinations or mosquito nets, it has a relatively permanent impact. "Once a breeding site is gone, it's gone" Bomblies said.

Other methods the team has studied include spreading ground up seeds from the neem tree, which grows locally, in the ponds, which can reduce the mosquito population by about 50 percent.

"For the first time, we have a detailed computer model" of all the different factors in the disease's spread, Eltahir said. By making it possible to run detailed simulations of a wide variety of strategies, "we can do a lot of things, in this region or elsewhere, that we could never do in the past. It can allow you to do things in a more cost-effective way."

This project has been funded by the ocean and human health program of the National Oceanographic and Atmospheric Administration (NOAA), and the National Science Foundation.
Source: MIT.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B