Skip to main content

Rising carbon dioxide levels disastrous for coral reefs

Rising carbon dioxide levels in the world’s oceans could deliver a disastrous blow to the ability of coral reefs to withstand climate change. A major new investigation by Australian scientists has revealed that acidification of the oceans from human CO2 emissions has the potential to worsen the impact of the bleaching and death of reef-building organisms expected to occur under global warming. The study, by a team led by Dr Ken Anthony of the ARC Centre of Excellence for Coral Reef Studies and the University of Queensland, published in this week’s Proceedings of the (US) National Academy of Sciences (PNAS) concludes that earlier research may significantly understate the likely damage to the world’s reefs caused by man-made change to the Earth’s atmosphere.

In a large experiment on Australia’s Heron Island, the team simulated CO2 and temperature conditions predicted for the middle and end of this century, based on current forecasts of the world’s likely emission levels and warming by the Intergovernmental Panel on Climate Change (IPCC). The results of their analyses of the bleaching, growth and survival of a number of organisms including corals indicates that a number of very important reef builders may be completely lost in near future. “We found that coralline algae, which glue the reef together and help coral larvae settle successfully, were highly sensitive to increased CO2. These may die on reefs such as those in the southern Great Barrier Reef (GBR) before year 2050,” says Dr Anthony.

“Every time you start your car or turn on the lights, half the CO2 you emit ends up in the oceans, turning them just a tiny bit more acidic, as well as causing the climate to warm. What is new is an understanding of how these two effects interact to affect the corals and reef building algae.”

The CoECRS team erected 30 large aquaria in the waters of Heron Island in the southern GBR and studied the combined effects of warming, high CO2 and sunlight on a large range of reef organisms for eight weeks.

“The results, frankly, are alarming,” says Professor Ove Hoegh-Guldberg. “They clearly suggest that previous predictions of coral bleaching have been far too conservative, because they didn’t factor in the effect of acidification on the bleaching process and how the two interact.”

The results of the team’s analyses of the bleaching, growth and survival of key coral reef species indicate that a number of very important reef builders may be completely lost in the near future – in particular the coralline algae that glue the reef together and help coral larvae settle successfully, says Dr Guillermo Diaz-Pulido.

On the positive side, some coral species seem able to cope with the levels of ocean acidification expected by the mid-century by enhancing their rates of photosynthesis, says team member Dr David Kline. “This is an important discovery that can buy the reef time while the nations of the world work together to stabilise CO2 emissions,” he says.

“Although high CO2 causes corals to bleach and lose their symbiotic organisms, the surviving symbionts seem able to work harder. However, when CO2 levels in the water become too high, the symbiotic coral-algal system crashes and the corals die”, adds Dr Sophie Dove.

“The implications of this finding are massive as it means that our current bleaching models, which are based on temperature only, severely underestimate the amount of coral bleaching we will see in the future,” Dr Anthony says.

“These results highlight the urgency of reducing CO2 emissions globally. Without political will and commitment to abatement, entire reef systems such as the Great Barrier Reef will be severely threatened in coming decades,” the team warns.

The results of the research are being offered to reef managers to help them develop strategies to protect the reefs which are most at risk.
Credits: ARC Centre of Excellence in Coral Reef Studies.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B