Skip to main content

One step closer to defending antibiotic resistant superbugs

A discovery from the Oklahoma Medical Research Foundation has put scientists are one step closer to finding a defense against dangerous antibiotic-resistant bacteria, sometimes called “superbugs.” In a study that will be published in the Nov. 11 edition of the Proceedings of the National Academy of Sciences, OMRF researchers Philip Silverman, Ph.D., and Margaret Clarke, Ph.D., have obtained the first visual evidence of a key piece in the puzzle of how deadly superbugs spread antibiotic resistance in hospitals and throughout the general population. “These ‘superbugs’ have become increasingly common since the widespread use of antibiotics began and they are now a serious public health menace,” said Silverman, who holds the Marjorie Nichlos Chair in Medical Research at OMRF. “Now, for the first time, we can begin to see, literally, how they acquire and disseminate antibiotic resistance.”

Philip Silverman, Ph.D., and Margaret Clarke, Ph.D., have obtained the first visual evidence of a key piece in the puzzle of how deadly superbugs spread antibiotic resistance in hospitals and throughout the general population. (Credit: Image courtesy of Oklahoma Medical Research Foundation). Last year, a government report estimated that nearly 19,000 people in the United States had died in a single year after being infected with the virulent superbug known as methicillin-resistant Staphylococcus aureus, or MRSA. “MRSA and other antibiotic-resistant bugs are one of the greatest threats facing health care today,” said OMRF President Stephen Prescott, M.D. “These infections are easily transmitted—they make their way into the body through breaks in the skin, even microscopic ones, and through nasal passages. They resist treatment with standard antibiotics, which makes them dangerous. And they are particularly threatening in hospitals, because they attack patients whose immune systems may already be compromised.”

The new study from OMRF casts light on the role that structures known as conjugative pili—slender, thread-like bacterial filaments —play in spreading antibiotic resistance. Although scientists have known for decades that these filaments are required to transmit antibiotic resistance genes from one bacterium to another, Silverman and Clarke are the first to capture images of them as they extend and retract on live cells.

The OMRF research team, which included Cindy Maddera and Robin Harris, attached a fluorescent dye to a virus, which in turn bound specifically to the filaments on live bacteria. This allowed the behavior of the filaments to be recorded with a high-powered fluorescence microscope. Using this process, the scientists were able to capture a detailed series of images showing filament growth, attachment to other cells, and retraction to pull the cells together in preparation for genetic transfer.

“This is an important step forward in understanding how antibiotic resistance spreads,” said Silverman. Silverman and Clarke will continue to study the ways in which antibiotic resistance spreads. The aim of that work will be to help develop a better understanding of—and, ultimately, tools to combat—this life-threatening phenomenon.

“More people in the U.S. die of MRSA each year than of HIV/AIDS,” said Silverman. “It’s crucial that we do all we can to combat this profound threat to human health.”

The research, which was done in collaboration with OMRF’s Imaging Center, was funded through grants from the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology.
Credits: Oklahoma Medical Research Foundation.

Comments

Popular posts from this blog

Charging Implanted Heart Pumps Wirelessly

Mechanical pumps to give failing hearts a boost were originally developed as temporary measures for patients awaiting a heart transplant. But as the technology has improved, these ventricular assist devices commonly operate in patients for years, including in former vice-president Dick Cheney, whose implant this month celebrates its one-year anniversary. Prolonged use, however, has its own problems. The power cord that protrudes through the patient's belly is cumbersome and prone to infection over time. Infections occur in close to 40 percent of patients, are the leading cause of rehospitalization, and can be fatal. Researchers at the University of Washington and the University of Pittsburgh Medical Center have tested a wireless power system for ventricular assist devices. They recently presented the work in Washington, D.C. at the American Society for Artificial Internal Organs annual meeting, where it received the Willem Kolff/Donald B. Olsen Award for most promising research in

Autism and Eye Contact: Genes very much are involved

We have now a lot of evidence on genetic components in many disorders including neurological in both adults and kids. Autism is one such problem that has many genes involved. Research is still in full swing to find more genes and related pathways. However, one can find autistic features more phenotypically before genotyping. Eye contact is one of them. Studies have shown that autistic kids make less eye contact. This has been shown to have genetic component now. New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects. The discovery by researchers at Washington University School of Medicine in St. Louis and Emory University School of Medicine in Atlanta adds new detail to understanding the causes of autism spectrum disorder. The results show that the moment-to-moment movements of children's eyes as they seek visual information about the

How much people depend on weather reports

Meteorologists on television, radio, online, and in newspapers supply weather reports to the average person over 100 times a month. Surveys demonstrated that the 300 billion forecasts accessed generate a value of $285 per household every year, or $32 billion for the entire United States. Odds are you have already watched one weather forecast today and will probably check out a few more. Accurate, timely forecasts are vital to everyday life, but just how critical may surprise you. Whether at work or play, you probably watch the weather quite closely. Most of us are at the weather person's mercy to know what to wear, what to expect, to prepare for the worst. New research shows the average United States household checks out a weather report more than three times a day. "It impacts pretty much every part of every activity we are involved with for the most part," Jeff Lazo, the director of the Societal Impacts Program at the National Center for Atmospheric Research (NCAR) in B