Skip to main content

Rapid changes in earth’s core affecting magnetic field discovered

The movements in the liquid part of the Earth’s core are changing surprisingly quickly, and this affects the Earth’s magnetic field, according to new research from DTU Space. The Ørsted satellite’s very precise measurements of the Earth’s magnetic field over the past nine years have made it possible for Nils Olsen, Senior Scientist with DTU Space, and several German scientists, to map surprisingly rapid changes in the movements in the Earth’s core. The results have just been published in the scientific journal Nature Geoscience.

Ørsted magnetometer measurements form the base for the latest International Geomagnetic Reference Field, the IGRF2000. A graphical representation of the total magnetic field strength at the Earth's surface inferred from the IGRF2000 is shown below. The blueish-black range of colors represents a field strength above the mean field at the surface and the reddish-yellow range a field strength below the mean field. “What is so surprising is that rapid, almost sudden, changes take place in the Earth’s magnetic field. This suggests that similar sudden changes take place in the movement of the liquid metal deep inside the Earth which is the reason for the Earth’s magnetic field,” Nils Olsen explains. The Earth’s core consists of an inner solid core which is surrounded by an outer liquid core approx. 3,000 km below our feet. Both the liquid core and the solid core consist primarily of iron and nickel, and it is the movements in the outer liquid part of the Earth’s core which create the Earth’s magnetic field. Changes in these movements are seen as changes in the magnetic field, and scientists can therefore use satellite measurements of the magnetic field to find out what is going on in the liquid core deep inside the Earth.

Scientists from DTU Space and other institutions are currently preparing a joint European successor to the Ørsted satellite by the name of Swarm. The Swarm mission consists of three satellites, which will be measuring the Earth’s magnetic field even more accurately than the Ørsted satellite. “By combining the Swarm and Ørsted magnetic measurements we hope to find out the reason for the-se rapid movements in the core,” Nils Olsen concludes. Source: Danish Meteorological Institute/Tech. Inst. of Denmark.

Comments

Popular posts from this blog

Regulated deficit irrigation, new recommendations for grape cultivation

The inland areas of the Pacific Northwest, where rainfall averages only 4 to 12 inches per year, present growing challenges for vineyard owners and wine grape producers. The arid conditions in this part of the country have not been conducive for vineyard owners who produce and market high-quality wine grapes. To promote healthy grape production when nature fails to deliver, vineyard managers in the area typically employ an irrigation practice known as “regulated deficit irrigation”. More than 60% of the wine grapes in the state of Washington are grown using this drip irrigation method. Unfortunately, the current irrigation methods are replete with problems that can cause over-irrigation and compromised grape quality. Recently, researchers at Washington State University’s Irrigated Agriculture Research and Extension Center completed a study that should provide vineyard managers new techniques for producing healthy and long-lasting grape crops. Joan R. Davenport was the lead author of th...

Discovery of the missing link in spider evolution

New interpretations of fossils have revealed an ancient missing link between today’s spiders and their long-extinct ancestors. The research by scientists at the University of Kansas and Virginia’s Hampden-Sydney College may help explain how spiders came to weave webs. The research focuses on fossil animals called Attercopus fimbriunguis. While modern spiders make silk threads with modified appendages called spinnerets, the fossil animals wove broad sheets of silk from spigots on plates attached to the underside of their bodies. Unlike spiders, they had long tails. The research findings by Paul Selden, the Gulf-Hedberg Distinguished Professor of Invertebrate Paleontology in the Department of Geology at KU, and William Shear, the Trinkle Professor of Biology at Hampden-Sydney College, were published this week in the Proceedings of the National Academy of Sciences. New interpretations of fossils have revealed an ancient missing link between today's spiders and their long-extinct ances...

Intense pressure to stimulate new cartilage growth, new hope for arthritis patients

Bioengineers at Rice University have discovered that intense pressure -- similar to what someone would experience more than a half-mile beneath the ocean's surface -- stimulates cartilage cells to grow new tissue with nearly all of the properties of natural cartilage. The new method, which requires no stem cells, may eventually provide relief for thousands of arthritis sufferers. "This tissue-engineering method holds promise not only for cartilage but also for tissues to repair bladders, blood vessels, kidneys, heart valves, bones and more," said lead researcher Kyriacos Athanasiou, Rice's Karl F. Hasselmann Professor of Bioengineering. The findings appear in the journal PLoS ONE. They are the latest from the emerging field of tissue engineering, a new discipline that aims to capitalize on the body's innate healing abilities to develop new ways of growing tissues that can be used to surgically repair wounds without risk of rejection. Cartilage, a tissue in the hum...